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@ Introduction
@ Why build a physics-based model of the sensor?
@ Simulating the sensor.
@ Simulation successes:
o Edge effects.

o Diffusion effects.
o Brighter-Fatter effect

@ Direct measurements
o Correlation measurements

@ Conclusions and next steps.
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The last 3 zeptoparsecs!

Incident Light

100 microns
(3 zeptoparsecs!)

-50 to -75V
Potential sweeps
electrons to
front side.

Electrons collected
by positive gates.
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Why build a physics-based simulation of the sensor?

@ Allows one to turn physical effects (such as diffusion) on and off.

@ Allows study of small effects without interference from extraneous
problems:
o Noise
o Crosstalk
e Optical Distortion, ...

@ Allows study of the impact of sensor differences:
e Doping
e Thickness
e Vendor, ...

@ Allows study of the impact of environmental effects:

e Temperature
e Voltage, ...



Typical Simulation 100pm Cube.

Incoming Light

Fixed Voltage (~-50V) on Top

Free boundary
conditions on sides

Charges in bulk (normal derivative of phi = 0}

determined by
bulk doping and
Channel / Channel-stop
implants

Voltages on bottom as appropriate (next slides)

@ 100pm Cube. - 10 X 10 pixels in X and Y.
@ 32 grid cells per pixel - cell size = 0.31 u .

100 microns
(3 zeptoparsecs!)

Incident Light

-50 to -75V

1| Potential sweeps
electrons to
front side.

Electrons collected
by positive gates.

@ A B-F run with 256 spots, 3 million electrons ( 300,000 in central spot)

takes about 6 hours.



Pixel Array Summary Plot
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Potential Simulation at Array Edge
Array Center Potentials. Grid = 1024*256*256.
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LSST Optical Simulator

Tyson, et.al., “The LSST Beam Simulator”
arXiv:1411.5667.

, SPIE 9154-67

(2014),

20



Typical Image of 30 micron Spots




Array Edge Astrometric Shift

Pixel Shift
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Bradshaw, et al., JINST 10C4034B (2015), arXiv:1507.02683.
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Theoretical Diffusion
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asics of the Brighter-Fatter Effec
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Simulation Strategy for B-F effect.

@ Solve Poisson’s equation for postage stamp with all pixels empty.

@ Choose a random location within the central pixel.

@ Determine starting locations for N electrons in a 2D Gaussian spot.
@ Propagate these electrons down to their collecting gates.

@ Re-solve Poisson’s equation with these wells now containing the
appropriate charge.

@ Repeat with N more electrons.

@ | have been using 10,000 electrons per step, which places about 1000
electrons in the central pixel, so about 100 iterations are needed to fill
the central pixel.

@ In practice, repeat for more than one spot (typical 256), each with a
different central location.
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B-F Slopes vs VBB, Measurements and Simulations -
Assumed Charge Location
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B-F Effect and pixel correlations in CCD flats.
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@ Antilogus, et al.,
JINST 9C3048
(2014),
arXiv:1402.0725.

@ Rasmussen, A.,
JINST 904027
(2014),
arXiv:1403.3317.

@ A pixel that receives an excess of electrons causes surrounding to pixels grow
slightly in area, leading them to also receive a slight excess in electrons.
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Charge Distribution (Assumed)
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@ A range of ellipses with different ellipticities and orientations.

o Image, extract shapes with dm stack and compare to input.

@ Future masks will include mock galaxies with different light profilesl.g/20



Conclusions and Next Steps

@ Physics-based simulations are a powerful tool for studying astrometric
and photometric distortions in CCDs.

@ We are having good success in simulating some important effects:
o Edge effects.
o Brighter-Fatter effects.
o Diffusion effects.

@ Future plans include:
e Continued refinement of the physics-based model with additional
measurements:
Voltages, Collecting phases, Saturation, ...
e Extension to both CCD vendors.

e More complex masks to allow tests with simulated stars and galaxies.
e Incorporation of the learning into PhoSim.
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